
Metaphor
Concept
! Metadata is a hot topic in computer science. Apple recently introduced a metadata 
search engine in Mac OS X 10.4 and Microsoft has been working on metadata tagging 
and search for Vista. An open source project named Beagle brings such features to 
Linux. These metadata systems allow a user to tag files with arbitrary metadata. Pic-
tures, for example, can be given a tag indicating where they were taken, and this in-
formation can later be used in searches. These systems also automatically extract me-
tadata when possible (using ID3 and EXIF tags for instance).
! Metaphor is a bridge between these metadata systems and the traditional file sys-
tem. It creates a directory structure containing a hierarchical representation of meta-
data. Figure 1 illustrates this concept with a possible representation of two Bob Dylan 
albums.

Music

Artists Genres Years Albums

Bob Dylan

Blood on the Tracks Blonde on Blonde

Tracks... Tracks...

Folk

Bob Dylan

Blood on the Tracks Blonde on Blonde

Tracks... Tracks...

1966 1975

Bob Dylan

Blonde on Blonde

Tracks...

Bob Dylan

Blood on the Tracks

Tracks...

Blood on the Tracks Blonde on Blonde

Tracks... Tracks...

Figure 1

! Tracks are referenced from several locations in the file system. If a track’s metadata 
is altered the directory structure is updated as well. The concept works for any file that 
has metadata associated with it, including PDFs, Word Documents, movies, etc.

Applications
1- File Servers 
Traditional file servers either have to organize their data into one fixed hierarchy or 
their administrators have to spend a great deal of time organizing links so that a file 
can be referenced from multiple locations. Maintaining links is more difficult than it 
seems. If a file is deleted then all of it’s links need to be deleted as well. Likewise for 
metadata updates. Metaphor cleanly solves this problem by creating a dynamic direc-
tory structure based on metadata. Because it is mounted as a traditional file system it 
can be exported via Samba, NFS or any other file server.

2- Browsing
In current systems the primary interface for accessing metadata is the search field, 
which is not always the best solution for finding a piece of data. In some circum-
stances browsing is more efficient. Assume a user wants to find all the rock music on 
his system. This could be accomplished by doing a search, but the search results 
would be presented as a flat list. Even with several levels of groupings, one artist could 
take up several pages of results, preventing a quick glance at what rock artists are 
available (or what rock albums are available, etc). An interface to browse metadata, on 
the other hand, would present the available rock music in an easily navigatable hierar-
chy.

Implementation
! Metaphor is implemented as a plugin for a small, high performance web server 
named lighttpd. This plugin creates a WebDAV (a ubiquitous network filesystem based 
on HTTP) server. When a file is requested it is streamed over the loopback device. All 
of this is totally invisible to the user. Metaphor launches and mounts itself at startup 
so that all the user ever sees is a new volume.

! The current version of Metaphor is available only for Mac OS X, so much of its im-
plementation is specific to that operating system. However the parts that are depend-
ent on OS X either have analogues on other systems or can be re-implemented, and a 
Linux port is planned. On OS X, Metaphor makes extensive use of Spotlight, OS X’s 
metadata archive and search system. 
! Internally Metaphor maintains two main data structures: a metadata tree and a 
meta-metadata tree. As should be clear from the name, the meta-metadata tree de-
scribes the metadata hierarchy. It is configurable via an easy to read XML file. While 
XML may not be applicable to every situation, it works well here because of how suited 
XML is to describing tree structures. Every node of the meta-metadata tree contains 
three items: a name formatter, a type and a predicate. Name formatters describe how 
the name of a folder or file is constructed. In the XML file a special format is used to 
describe name formatters. Keys are surrounded in @ symbols and all other text is 
considered static. For example, “[@kMDItemRecordingYear@] @kMDItemAlbum@” will 
generate folders with the recording year in square brackets, followed by the albums 
name (i.e “[1975] Blood on the Tracks”). The space and the square brackets are con-
sidered static text in this case.
! Predicates are the second element in meta-metadata nodes. They use a small C-
like query language which is conveniently similar to Spotlight’s own query language. 
“kMDItemAlbum != nil”, for example, means that an item must have an album tag in 
order to be filed into a given node. BLOBing for strings is possible as are compound 
predicates built using ORs and ANDs. Predicates are ANDed at each level of the tree so 
that a leaf node’s predicate is the product of it’s ancestors. A node can have one of 
three types: static folder (meaning its name does not change), dynamic folder (folders 
with keys in the name) or file (which are always dynamic). See figures 3 and 4 for a 
sample XML file and a graph representation of the data structure it is parsed into.

! The first implementation of Metaphor attempted to query Spotlight in real time as 
WebDAV requests were made. This approach turned out to be far too slow to provide a 
good user experience. The solution was to run Metaphor as a daemon and create a lo-
cal copy of relevant metadata. When files are added, deleted, or updated, Metaphor is 
notified and it’s copy is changed. At shutdown the metadata tree is serialized into a 
file and at startup it is loaded into memory.
! The actual metadata structure is fairly obvious; it is essentially a copy of the direc-
tory tree. Every node contains two items: a pointer to a node in the meta-metadata 
tree and a hash table for metadata keys and values. When a request is made the tree is 
traversed until the requested path is found. This entails asking every node encoun-
tered in the traversal to construct a name using it’s name formatter. All the keys refer-
enced in the name formatter must be requested from the hash table. A string com-
parison is then done between the constructed name and the current path component. 
If a match is made either another traversal takes place or the current node is returned 
to the WebDAV client.
! The first step in initially propagating the metadata tree (which should only take 
place once) is to analyze the meta-metadata tree and identify a common predicate. 
This predicate must be applicable to all nodes in the tree and is often something like, 
“find all movies, music or documents”. Once this minimum query is established Spot-
light is queried and it’s results are iterated through. Propagating an item into the tree 
entails traversing through each node in the tree and testing the item against a recur-
sively built predicate. If a match is not made for a given node then it is not traversed 
further. If a match is made then the item is added to the current node.

Problems
1- Cataloguing Applications
Applications like iTunes and Direct Connect that keep references to paths are funda-
mentally incompatible with Metaphor. If a file’s metadata changes then Metaphor’s di-
rectory hierarchy changes in response, breaking these references. In addition to this, 
most cataloging applications will import each reference to a file separately, which can 
quickly fill up a catalog with duplicates.

2- The Loopback Device
Streaming files over the loopback device has a negative effect on the transfer rate. 
Several solutions to this problem exist, all of which involve ditching WebDAV. The best 
(although most difficult) solution is to develop a kernel level VFS plugin. Files in the 
VFS would actually be links to files on other volumes, causing the system to read di-
rectly from files instead of through a proxy. A similar solution could be developed by 
modifying a light weight, cross-volume link supporting NFS server.

3- Dealing with the Finder
When the metadata tree is updated, the Finder (OS X’s file browser) needs to be up-
dated as well. Because of the nature of HTTP it isn’t possible for a WebDAV server to 
notify a client when updates are made. In addition to this, the Finder implements an 
erratic caching scheme which can prevent a user from seeing updates at all (even if a 
folder is reloaded). The current solution is a hack: the Finder is asked to refresh direc-
tories by making AppleScript (a scripting language implemented in many OS X’s appli-
cations) calls to the Finder. Unfortunately this solution is slow and unreliable.

4- Duplicates
Duplicates can occur if two files or directories have the same due to a match-up in 
metadata attributes. Metaphor was designed with this in mind and will eventually sup-
port appending numbers to the end of names to allow access to duplicates when they 
occur.

Conclusion and Future Directions

“Plan to throw one away; you will, anyhow” -Fred Brooks, The Mythical Man Month
“If you plan to throw one away, you will throw away two.” -Craig Zerouni

! As is often the case with software, a significantly better approach became apparent 
only after attempting an initial implementation. If a rewrite was attempted a real VFS 
plugin would most likely be developed. Doing so would allow the Finder and the rest 
of the system to handle live updates using native kernel notification system. A VFS 
plugin would also improve both browsing speed and transfer rate. By using cross-
volume links the catalog problem could be eliminated, assuming that the application 
followed links.
! Metaphor in it’s current state is however, usable. The data structures and core con-
cepts are sound and it is a good solution for file servers or individuals that want a 
clean way to organize a diverse set of data. As operating systems continue to develop 
their use of metadata these ideas will be increasingly relevant.

Project By Ryan Brown
Sponsored By Richard Weiss

wabdo.com/metaphor
Metaphor is released as Open Source Software under the GPL.

Figure 2

<?xml version="1.0" encoding="UTF-8"?>

<!-- Note that things have been simplified for example’s sake -->

<tree>
!<node name="Music" predicate="kMDItemContentTypeTree CONTAINS 'public.audio'">
!!<node name="Artists" predicate="kMDItemAuthors != nil">
!!!<node name="@kMDItemAuthors@">
!!!!<node name="[@kMDItemRecordingYear@] @kMDItemAlbum@" predicate="kMDItemAlbum != nil">
!!!!!<leaf name="@kMDItemDisplayName@" />
!!!!</node>
!!!</node>
!!</node>
!!

!!<node name="Genres" predicate="kMDItemMusicalGenre != nil">
!!!<node name="@kMDItemMusicalGenre@">
!!!!<node name="@kMDItemAuthors@" predicate="kMDItemAuthors != nil">
!!!!!<node name="[@kMDItemRecordingYear@] @kMDItemAlbum@" predicate="kMDItemAlbum != nil">
!!!!!!<leaf name="@kMDItemDisplayName@" />
!!!!!</node>
!!!!</node>
!!!</node>
!!</node>
!</node>
</tree>

Figure 3

No Predicate

/

Static Folder

'public.audio' IN kMDItemContentTypeTree

Music

Static Folder

kMDItemAuthors != nil

Artists

Static Folder

kMDItemMusicalGenre != nil

Genres

Static Folder

No Predicate

@kMDItemAuthors@

Dynamic Folder

kMDItemAlbum != nil

[@kMDItemRecordingYear@] @kMDItemAlbum@

Dynamic Folder

No Predicate

@kMDItemDisplayName@

Dynamic File

No Predicate

@kMDItemMusicalGenre@

Dynamic Folder

kMDItemAuthors != nil

@kMDItemAuthors@

Dynamic Folder

kMDItemAlbum != nil

[@kMDItemRecordingYear@] @kMDItemAlbum@

Dynamic Folder

No Predicate

@kMDItemDisplayName@

Dynamic File

Figure 4


